6,365 research outputs found

    Energy Resolved Supercurrent between two superconductors

    Full text link
    In this paper I study the energy resolved supercurrent of a junction consisting of a dirty normal metal between two superconductors. I also consider a cross geometry with two additional arms connecting the above mentioned junction with two normal reservoirs at equal and opposite voltages. The dependence of the supercurrent between the two superconductors on the applied voltages is studied.Comment: revtex, 7 pages, 8 figures. accepted by Phys. Rev.

    ac Josephson effect in asymmetric superconducting quantum point contacts

    Full text link
    We investigate ac Josephson effects between two superconductors connected by a single-mode quantum point contact, where the gap amplitudes in the two superconductors are unequal. In these systems, it was found in previous studies on the dc effects that, besides the Andreev bound-states, the continuum states can also contribute to the current. Using the quasiclassical formulation, we calculate the current-voltage characteristics for general transmission DD of the point contact. To emphasize bound versus continuum states, we examine in detail the low bias, ballistic (D=1) limit. It is shown that in this limit the current-voltage characteristics can be determined from the current-phase relation, if we pay particular attention to the different behaviors of these states under the bias voltage. For unequal gap configurations, the continuum states give rise to non-zero sine components. We also demonstrate that in this limit the temperature dependence of the dc component follows tanh(Δs/2T)\tanh(\Delta_s/2T), where Δs\Delta_s is the smaller gap, with the contribution coming entirely from the bound state.Comment: To appear in PR

    Building effective models from sparse but precise data

    Full text link
    A common approach in computational science is to use a set of of highly precise but expensive calculations to parameterize a model that allows less precise, but more rapid calculations on larger scale systems. Least-squares fitting on a model that underfits the data is generally used for this purpose. For arbitrarily precise data free from statistic noise, e.g. ab initio calculations, we argue that it is more appropriate to begin with a ensemble of models that overfit the data. Within a Bayesian framework, a most likely model can be defined that incorporates physical knowledge, provides error estimates for systems not included in the fit, and reproduces the original data exactly. We apply this approach to obtain a cluster expansion model for the Ca[Zr,Ti]O3 solid solution.Comment: 10 pages, 3 figures, submitted to Physical Review Letter

    Supercurrent tunneling between conventional and unconventional superconductors: A Ginzburg-Landau approach

    Get PDF
    We investigate the Josephson tunneling between a conventional and an unconventional superconductor via a Ginzburg-Landau theory. This approach allows us to write down the general form of the Josephson coupling between the two superconductors, and to see which terms are forbidden or allowed by spatial symmetries. The time-reversal symmetry is also considered. We discuss the current-phase relationships, magnetic, and ac effects if we just include this direct coupling to the unconventional superconductor. In addition we consider the Josephson coupling between two short-coherence-length superconductors, extending the work of Deutscher and Müller (DM) to a finite-current calculation. We find that the critical current is suppressed below the DM value due to the fact that the coupling between the two superconductors across the junction depends on the phase difference and hence the current itself. Finally we investigate the possibility of the proximity effect, in particular the possibility that the conventional-type pairing is induced and hence coexists with the unconventional pairing near the junction. This would give the dominant contribution to the tunneling current if the direct tunneling to the unconventional pairs are suppressed for some reason. We point out that there is no possibility of dissipationless tunneling above the transition temperature of the unconventional superconductor. Even in the case in which the unconventional superconductor is below its transition temperature, we find that, for the possibility of a dissipationless current, it is crucial to have a coupling between the induced s wave and the unconventional superconductor that depends on their phase difference, which allows the conversion of the supercurrent from one type to the other. The behavior of this current, in particular as a function of temperature, is discussed. We also discuss the magnetic and time-dependent effects of the junction in the presence of this proximity effect. We see that, while some of these remain unaffected, some, in particular the time-dependent processes, are affected in a rather nontrivial manner

    Haemorrhaging lesion in the breast: is there a role for embolisation?

    Get PDF
    Angiosarcoma of the breast is an extremely rare condition. This case illustrates the use of embolisation as a modality of treatment for primary breast angiosarcoma. No other case has been reported on the use of embolisation for this disorder

    Magnetic Field Effect on the Supercurrent of an SNS junction

    Full text link
    In this paper we study the effect of a Zeeman field on the supercurrent of a mesoscopic SNS junction. It is shown that the supercurrent suppression is due to a redistribution of current-carrying states in energy space. A dramatic consequence is that (part of the) the suppressed supercurrent can be recovered with a suitable non-equilibrium distribution of quasiparticles.Comment: 4 figures in postscrip

    Larkin-Ovchinnikov state in resonant Fermi gas

    Full text link
    We construct the phase diagram of a homogeneous two component Fermi gas with population imbalance under a Feshbach resonance. In particular, we study the physics and stability of the Larkin-Ovchinnikov phase. We show that this phase is stable over a much larger parameter range than what has been previously reported by other authors.Comment: Typos correcte

    Josephson Effect between Condensates with Different Internal Structures

    Full text link
    A general formula for Josephson current in a wide class of hybrid junctions between different internal structures is derived on the basis of the Andreev picture. The formula extends existing formulae and also enables us to analyze novel B-phase/A-phase/B-phase (BAB) junctions in superfluid helium three systems, which are accessible to experiments. It is predicted that BAB junctions will exhibit two types of current-phase relations associated with different internal symmetries. A ``pseudo-magnetic interface effect'' inherent in the system is also revealed.Comment: 4 pages, 2 figure

    Time-Dependent Density Functional Theory with Ultrasoft Pseudopotential: Real-Time Electron Propagation across Molecular Junction

    Full text link
    A practical computational scheme based on time-dependent density functional theory (TDDFT) and ultrasoft pseudopotential (USPP) is developed to study electron dynamics in real time. A modified Crank-Nicolson time-stepping algorithm is adopted, under planewave basis. The scheme is validated by calculating the optical absorption spectra for sodium dimer and benzene molecule. As an application of this USPP-TDDFT formalism, we compute the time evolution of a test electron packet at the Fermi energy of the left metallic lead crossing a benzene-(1,4)-dithiolate junction. A transmission probability of 5-7%, corresponding to a conductance of 4.0-5.6muS, is obtained. These results are consistent with complex band structure estimates, and Green's function calculation results at small bias voltages

    Mechanisms of Spontaneous Current Generation in an Inhomogeneous d-Wave Superconductor

    Full text link
    A boundary between two d-wave superconductors or an s-wave and a d-wave superconductor generally breaks time-reversal symmetry and can generate spontaneous currents due to proximity effect. On the other hand, surfaces and interfaces in d-wave superconductors can produce localized current-carrying states by supporting the T-breaking combination of dominant and subdominant order parameters. We investigate spontaneous currents in the presence of both mechanisms and show that at low temperature, counter-intuitively, the subdominant coupling decreases the amplitude of the spontaneous current due to proximity effect. Superscreening of spontaneous currents is demonstrated to be present in any d-d (but not s-d) junction and surface with d+id' order parameter symmetry. We show that this supercreening is the result of contributions from the local magnetic moment of the condensate to the spontaneous current.Comment: 4 pages, 5 figures, RevTe
    corecore